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Let f � L2 � Ω � be an image possibly corrupted
by noise, defined on a bounded open set Ω ��� 2 .
We may assume f � x � ��� 0 � 1 	 . In image process-
ing via variational methods, one is interested in
decomposing f into u, and v, by an energy mini-
mization. Here u represents the “true features” in
f , and v represents the “noisy components” in f .

In 1989, D. Mumford and J. Shah introduced a
model which decomposes f corrupted by additive
gaussian noise into u 
 v, via

inf
u � Γ �

JMS � u � Γ ��
��
Ω � Γ � ∇u � 2 
 µ �

Ω

� f � u � 2 
 λ � Γ ��� �
where µ, and λ are weighting parameters which
need to be chosen effectively, Γ is a piecewise
smooth curve in � 2 , and � Γ � denotes the one di-
mensional Hausdorff measure of Γ.

In 1992, L. Rudin, S. Osher, and E. Fatemi
proposed a simpler model, where they impose
u � BV � Ω � , and v � L2 � Ω � . Here BV � Ω � is a
space of functions of bounded variations. The im-
age f in this model is decomposed into u 
 v by
an energy minimization,

inf
u

�
JROF � u ��
 �

Ω � ∇u � 
 λ �
Ω

� f � u � 2 � �
referred to as the ROF model.

However, as Y. Meyer points out in [?], if one
decomposes f into u 
 v using the ROF model,
the v component is not purely noise, it contains
some image features that are supposed to be in u.
For example, if f is a characteristic function of a
disk, with no noise, then for any λ � ∞, the ROF
model will not give v 
 0.

From this motivation, other models have been
introduced. For example, in 2002, L. Vese and S.
Osher proposed to decomposed f into u 
 v by an

energy minimization,

inf
u � BV � Ω ��� �g � Lp � Ω � � JVO � u ���g ��
��

Ω � ∇u �
 µ ��� f � u � div �g � � 2L2 � Ω �
 λ � ��� �g ��� � Lp � Ω � � �
where v 
 div �g, and � �g � 
"! g2

1 
 g2
2.

Other models include:

1. S. Osher, A. Sole, L. Vese (2002):

inf
u

�
JOSV � u �#
$�

Ω � ∇u �
 λ �
Ω � ∇ � ∆ % 1 � f � u ��� � 2 ��&

Here u � BV � Ω � , and v � H % 1 � Ω � .
2. T. Chan, and S. Esedoglu (2004):

inf
u

�
JCS � u ��
 �

Ω � ∇u � 
 λ �
Ω � f � u � � &

In this model, u � BV � Ω � , and v � L1 � Ω � .
The models described above are used to denoise
additive gaussian noise of mean zero. Images
with other types of noise, say multiplicative noise
of mean one, where f 
 uv and ' Ω v 
 1, are de-
noised using algorithms such as the ROF model
with a different fidelity term:

inf
u

�
JROF � u ��
$�

Ω � ∇u � 
 λ �
Ω

� f
u

� 1 � 2 ��&
We also consider an energy minimization inspired
by [?] to model poisson noise,

inf
u � BV � Ω � � J � u ��
$�

Ω � ∇u � 
 λ �
Ω

� u � f logu � ��&
In this paper, we introduce a statistical model to
capture the similarities in images with various
types of noise, and to compare the recovered im-
age of different reconstruction models in the liter-
ature. The types of noise considered are additive
gaussian, multiplicative, salt and pepper, poisson,
and cracks. Currently, our focus is on additive
gaussian noise.

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545



Information Divergences

Description of our model:
Suppose f is a discrete image of N ( M pix-

els. We can view f as being an element of � N ) M .
However, for natural images, the dimension is far
smaller than NM. Therefore, we define a filter, F ,
which decreases the dimension of the images,

F : � N ) M * � n ) m �
where n �+� N, and m �+� M.

Given an image f � x � �,� 0 � 1 	 , define its his-
togram h f by

h f
� i �-
 �/. x : f � x � �0� i∆h � � i 
 1 � ∆h 	21 � � i 
 0 � 1 � &�& & �

where ∆h 
 1
255 . The cummulitative distribution

function is then defined by

H f
� k ��
 �3. i : h f

� i �54 k 1 � � k 
 0 � 1 � & &�&
Now, let T be the true image, N be the true im-
age T corrupted by additive noise, and R be the
recovered image (from applying one of the above
denoised algorithms). We now will quantify how
good the recovered image R is, according to three
different metrics:

1. � � HF � T � � HF � R � � � L∞ 
 ��� HF � N % R � � HF � N % T � � � L1 .

2. infσ
�

� � HF � H % R � � HF � η � σ ��� � � L1 � 
 ��� HF � T � �
HF � R � � � L∞ , where η � σ � is a purely gaussian
random noise image of standard deviation σ.

3. σ 6�
 ��� HF � R � � HF � T � σ 78��� ��� L2 , where σ 6 min-
imizes infσ

�
� � HF � H % R � � HF � η � σ ��� ��� L1 � , and

T � σ 6 � is the true image corrupted by additive
gaussian noise of standard deviation σ 6 .

Different filters, F , will be used to greatly dis-
tinguish between clean and noisy images. Also,
other forms of metrics will be considered for
other types of noise.
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